Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design and Control of a Novel Geared Electromagnetic Active Suspension

2016-04-05
2016-01-1554
A novel geared electromagnetic active suspension is proposed in this paper. A pushing rod and a rocker are introduced to transfer the suspension vertical motion to the rotational motion of the motor. Comparing with the common ball-screw active suspension, it presents advantages of simple structure, easy manufacturing and module design. As the state variables of the suspension system cannot be all obtained for the sake of cost, taking the suspension deflection as the measurement, an output feedback LQR optimal controller is adopted, and it is concluded that the system can be stable with damping. Considering the nonlinearity of equivalent stiffness and unsprung mass caused by the system structure, parameter perturbation ranges are concluded through dynamic analysis, and robust H∞ control algorithm is proposed to realize the multi-objective optimization.
Journal Article

Robust Control of a Four-Wheel-Independent-Steering Electric Vehicle for Path Tracking

2017-03-28
2017-01-1584
Compared with the traditional front-wheel- steering (FWS) vehicles, four-wheel-independent-steering (4WIS) vehicles have better handing stability and path-tracking performance. In view of this, a novel 4WIS electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. As to the 4WIS EV, a linear quadratic regulator (LQR) optimal controller is designed to make the vehicle track the target path based on the linear dynamic model. Taking the effect of uncertainties in vehicle parameters into consideration, a robust controller utilizing μ synthesis approach is designed and the controller order reduction is implemented based on Hankel-Norm approximation. In order to evaluate the performance of the designed controllers, numerical simulations of two maneuvers are carried out using the nonlinear vehicle model with 9 degrees of freedom (DOF) in MATLAB/Simulink.
X